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Sparse Approximation

National retailer sees a stream of transactions:
e 2 Thomas sold, 1 Thomas returned, 1 TSP sold .
Implies vector x of item frequencies:

e 40 Thomas, 2 Lego, —30 TSP, ...

Goal: Track items with large-magnitude counts



Example Algorithm

Measurements Signal,
Measurement matrix, ® \ 0 /
0
(53\ (1 1 1 1 1 1 1 1) .
0
0 = 0 0 0 0 1 1 1 1 0
5.3 0 0 1 1 0 0 1 1 0
\o/ \o 1 0 1 0o 1 o0 1) ;
\ 0/

Recover position and coefficient of single spike in signal.




Algorithmic Constraints

e Little time per item
e Little storage space

e Little time to answer queries



Fundamental Queries

Identification: Output a set that

e contains all “heavy” indices

e contains no “light” indices

e (medium weight: no constraint)
Estimation

e ecstimate large coefficients reliably.



Summaries

Fundamental queries can be used to build summaries:
e Fourier/Wavelet summaries
e Piecewise-constant, piecewise-linear summaries

Other user queries can be answered from summary



Overview of Summaries

Heavy Hitters

Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
Piecewise-linear

Range queries



Setup

Design

e a matrix ® and decoding algo D that work together.
Process Stream:

o Track y = dx.
Answer queries:

e Output D(Px).



Processing Items

e See “add v to z;”

e Read as “add vector ve; to x”

y

\

y — Px
Tr < T + vey

Yy —y+vPe,



Some Costs

Space:
e |y| plus space to store ®.
Time per item:
e generate Pe;
e Usually about proportional to |y
e Sometimes much less if ® is sparse

(Still need to analyze time for queries. Depends a lot on ¢ and D.)



Warmup: One Spike, Low Noise

\@.D
0

5.3
0
0

(56 (1 1 1 1 1 1 1 1)

021 =120 0 0 0 1 1 1 1
5.5 0 0 1 1 0 0 1 1

\o/ \o 1 0 1 0o 1 o0 1/ -

\ 0

d columns and log(d) rows. (Deterministic and efficient)

If b* is £’th row of matrix, and spike is at 4, need
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|z;| > 2.01) ) j # i|x;| or (weaker) V/

;| > 2.01 > bla;
j#i
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Many Spikes? Group Testing

Example:
e 150 soldiers; 3 have syphilis
e Pool specimens into 6 random groups.

e “Many”’ groups have
— exactly one sick soldier

— about 1/6 of the dilution from healthy soldiers

e Perform 6 tests

— clear > 3 groups—75 soldiers
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Warmup II: L1 significance

Problem:
e Suppose |z;| > WMU,?E. |z;|. Find 7.
Solution: Hash...

o Keep % fraction of positions at random

— i.e., consider zr, where r is 0/1-valued
e With prob > %u we keep 1; i.e., r; = 1.

o For each j # i, El|rjz;|] = +|z;].
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Warmup II: L1 significance

So i i
E > Irzil| = ) Ellrxl]
| J71 _ ji
1
~ 19k MU 5

JFu
So, with prob > 3/4 (independently of whether r; = 1)
1
ozl < Yyl
— 3k “—
JFu Ve
1

< w_&ii

Repeat, and proceed as above!
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Digression: Linearity of Expectation

Recall that a random variable is a function on a sample space.

X: Q2 — R
w — X(w)
Then E[X]| =} .qX(w)Pr(w), and so
EX+Y] = ) (X(w)+Y(w))Pr(w)
wel
= ) X(w)Prw)+ ) Y(w)Pr(w)

= E[X]+ E[Y].

15



Digression: Markov

Theorem: If X is a non-negative random variable and a > 0, then

Pr(X > a) < E[X]/a.

Proof:
EX] = ) aPr(X=ux)
- Sarix =0

= Mﬂ.@w@.

E.c., Pr(X > 4E[X]) < 1/4.
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3 1
P > . = _
r(success) > AT AT > or
1

Pr(failure) <

Repeat 6k times, independently.

6k
1
Pr(all failures) < AH — mﬂv ~1/e~ .37 < .5.

Repeat total of 6km times.

e Modest cost.

e Pr(all failures) < 27™.
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Putting it together

Collect repeated r’s into matrix, R.

Take row tensor product R ®, B with bit testing matrix, B:

e rows are {rb: r is row of R, b is row of B}
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Warmup III: L2 significance

Problem: Suppose now that z? > % MUQ.«D. &wm want to find i.
e Note: stronger statement than before.
Solution:

e Multiply each x; by random =1 first

1
36k’

o Keep at random

e i.e., consider rsx, where
— s has random signs

— 7 1s random mask
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Warmup III: L2 significance

Still keep ¢ with prob’y — (Assume this.)
_ . i} -
E MU biTi8;T; =F MU bjber;T08;5¢T T
j#i | JibF1 i
— E, MU Es|s;se|rjrebjbezjxy
j i l
= I, MU S&w
| ji,bj=1 ]
1
_ 2 _ 2
= 2 Bblm=ggn 2 A<
j#i,b;=1 j#i,bj=1
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Warmup III: L2 significance

With prob > 3/4,

H 2
M birisjzy | < g%
i
or

1
M birjsjx; < =|risix;|.
— 3
J#1

(Extra repetitions are needed to make all b* work simultaneously.)

Proceed as above.
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Digression: Expectation of a product

Theorem: If X and Y are independent, then F[XY| = E[X]E|Y].
Proof:

EXY]| = M&@ﬂik“&@baw\“@v

= MUM@ Pr(X =) Pr(Y = y)
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Digression: Cauchy-Schwarz Inequality

Theorem:

WA 2 4 d 2
(D) <3< (L)
1=1 1=1 1=1

either equality is possible.
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Cauchy-Schwarz Inequality: Implication

Thus, if [z;| > >, _; |z;| then
s (Shel) >3
JFi JFu

But, if |x;|* > D it |z;|?, then all we know is

1
il > [3 a2 > 3 fal

J#i J#i

Weaker by the large factor v/d.
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Cauchy-Schwarz Inequality: Proof

For Y2 < (3 |2))*

Pick out diagonal; Equality if there is only one term.
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Cauchy-Schwarz Inequality: Proof

For 1 (3" |z:)* <3 a2, need
MW@? z,1) < [lz|l - 11| = [l - Vd.

We'll show (z,9) < |1zl ly]l

Can normalize; assume ||z|| = ||y|| = 1. Then
2 2
0<(z—yz—y) =" +lyll" - 2(zy).

So (z,y) < (ll]* + llyl*) /2 =1 = ||z[ - |yll. Equality if (and only

if)  and y are proportional.
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On to Estimation

Let s be a random +1-valued random vector.
Atomic estimator for x; is X = s; (z,s). Then
X = S; MU%M..&Q. = M%&mm&mu
J J
SO
J

Need to bound variance.
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Estimation: Variance

Also

var(X) = E[X?] - 2?

Standard deviation small /bounded in terms of target value.
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Markov/Chebychev

Theorem: For a > 0,
Pr(|X — E[X]| > a) < var(X)/a?.

Proof:
Pr((X — E[X])? > a?) < var(X)/a?.

Get Pr(|X — ;| > 3||z||) < 1/9.

30



Better distortion

Let Y be the average of m copies of X. Then E[Y] = F[X] and
var(Y) = Lvar(X).

Get
3 1
P ?é__ >3 __@,__v <L
m 9]
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Digression: Improving Variance

Theorem: Let Y be the average of m copies of X. Then
var(Y') = var(X). Proof:

Let u = E[X] = E[Y].
Then E[X — u] =0 and

var(X — p) = E[(X — u — 0)?] = var(X).
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Digression: Improving Variance

So assume F[X]| = FE[Y] = 0. Then

(1xx)

1
= — MU F[X;X;], using independence

iJ
1 2
= 2B

= %mt&.

var(Y) = E[Y?] = E
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Better failure probability.

Theorem: Suppose Pr(Y is bad) < 1/9.

Let Z be the median of [ independent copies of Y. Then
Pr(Z is bad) < 2790,

Proof: Z is bad only if at least half of the Y’s are bad. Apply
Chernoft.

.IW.QIQ —.
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Digression: Chernoff Bounds

Theorem: Suppose each of n Y;’s is independent with

v 1 —p, with probability p;
@ —p,  with probability 1 — p.

Let Y =5 .Y, If a >0, then

Pr(Y > a) < e 20/m.
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Chernoff: Proof

(Just for p =1/2, so Y; is £1/2, uniformly.)

Lemma: For A > 0, % <M/, (Proof: Taylor.)

NTMVMUM\L _ Mh@?wv&x&

B my+m|y "
- 2

2
my 3\w.
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Chernoff, cont’d

Pr(Y >a) = Pr(e*V >e*)

@Twwyj
mwyp

VAN

M —_
my n/2 wy@.

VAN

Put A = 2a/n; get
Pr(Y >a) < g2/,

37



To this point

Find all 7 such that =7 > £ 3., «7, with failure probability 27°.

e Need poly(k, ) rows in the matrix B ®, S ®; R; comparable

runtimes.
Estimate each x; up to e ||z|| with failure probability 2.

e Need poly(¢/€) rows; comparable runtimes.

38



Space

To this point, fully random matrices.
e Expensive to store!
But..
e Need only pairwise independence within each row

e (sometimes need full independence from row to row, but this is

usually ok).

e i.c., two entries r; and r, in the same row need to be

independent, but three entries may be dependent.

e This can cut down on needed space.

39



Pairwise Independence: Construction

Random vector s in £1¢ (equivalently, Z%)
Index 7 is a 0/1 vector of length log(d), i.e., ¢ € Nwom@.

Pick vector q € 708D and bit ¢ € L.
2

Define | s; = ¢+ {(q,%) | (mod 2).

Then, if 7 # j, then (s;,s;) takes all four possibilities with equal
probability.

40



Pairwise Independence: Proof

s; 1s uniform because c¢ is random.

Conditioned on s;, s; is uniform:

e Sufficient to show that s; 4 s; is uniform.

o 5;+s; = (c+(¢.9))+ (c+(¢.J)) =(¢i+7)
e | =~ j, so they differ on some bit, the £’th.

e As gy varies, s; + s; varies uniformly over Zs.

41



Pairwise independence, for r

Hashing into one of k buckets. Take log(k) independent hashes into
two buckets. Get bucket label bit-by-bit.

42



Space, again

For each row s, need only store g and c¢: log(d) + 1 bits.

For each row r, need only log(k) copies of ¢ and ¢: O(log(d) log(k))
bits.

(Many other constructions are possible.)
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All Together—Heavy Hitters

e Find all 7 such that z? > (1/k) D ki 7, with failure
probability 27*.

e Estimate each z; up to %e ||z|| with failure probability 27*.

e Space, time per item, and query time are poly(k, ¢,log(d), 1/¢).

44



Sparse Recovery

Next topic: Sparse Recovery.

Fix k and e.
Want x such that

|17 —zlly < (L+€) [Jag — =z,

Here ;) is best k-term approximation to x.

Will build on heavy hitters.

45



Sparse Recovery: Issue

Suppose k = 10 and coefficient magnitudes are
1,1/2,1/4,18,1/16, ...

Want to find top k terms in time poly(k), not time 2%,

Heavy Hitters algorithm only guarantees that we find and estimate

well terms with magnitude around 1/k—about log(k) terms.

46



Weak Greedy Algorithm

e F'ind indices of heavy terms in x

e Listimate their coefs, getting intermediate rep’n r.

— 1terative subroutine here

e Recurseon x —r.

47



Weak Greedy Algorithm

After removing top few terms, others become relatively larger.
Can get sketch ®(z — r) as dx — Or
At this point, £ may have more than k terms (to be fixed).

Weak greedy—may not find the heaviest term.

48



Iterative Estimation

Have: a set I of k indices, parameter ¢

Want: coefficient estimates so that the resulting approximation =
satisfies

|z =zl < (14 €) lz — 21|
Define
e /¢ be the complement of I.
o Er =Y, ;|z:|* be original energy in I

o £ = > ier|Ti — ;| to be energy in I after one round of
estimation.

e A = F;/Ej to be the dynamic range.

49



Iterative Estimation: Algorithm

Have: a set I of k indices, parameter ¢

Want: coefficient estimates so that the resulting approximation =
satisfies

|z —zf| <A +¢)flz—a.
Repeat log(A/e) times
1. estimate each x; for i € I, by 7; with |7; — z;]* < %@m

2. update .

50



Iterative Estimation: Proof

Get: NN m wﬁmnva Am I |_|m4~ov.

Case Ej > €+ Eye:

~ €

Er < —— (E;+ Fre
b= wﬁlmeA 1+ Ere)
€ 1
< E E
T R A TE e
1
= ZE.
9 I

Geometric improvement. Get down to eEjc if this case holds for all

1terations.
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Iterative Estimation: Proof

Case Ejf < ¢€- Eye:

~ €

Ey

VAN

A
|
&

Er fluctuates only in the range 0 to 5 FEj. after dropping below
mmNo .

52



Iterative Identification

Similar to estimation
Repeat log(A/€) times

~

1. Identify indices i with |z;* > g5 Eie.
2. Estimate each x;, for ¢ € I, by x; with @~ < Fe
3. update .

Final estimation:

o @N m W@No.
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Iterative Identification: Proof

First: Estimation errors do not substantially affect Identification.

Issue:
e Have a set [ of indices for intermediate r.
e We’'ll identify positions in & — 7.

e Values in (x — r); are based on estimates and may be larger

than x;

e ...contribute extra noise; obstacle to identification.

Identify i if |z;]? large compared with Eje, so get i if |z;]? large

compared with
Er>(1—€eE > (1—¢€)Eje.
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Iterative Identification: Proof

Among top k, miss a total of at most

€ €
Emir< — E=—"" (Ewn+ Exc).
KNC=91 1 ¢) wﬁ+®A K+ Exe)

Case Ex > eEke:

ﬂcﬂx + Exe)

< ~ E + !
21+¢€) T 2(1+e¢)

1
— ZFkg.
Mmﬂ

IA

Er\1

5%

955



Iterative Identification: Proof

Case Fg < eFge:
E < ——(F Ere
KA = wﬁleVA K+ Eice)
< =FEkKe-.

Either case, identify enough.
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Iterative Identification—proof

Three sources of error:
1. outside top k—excusable.
2. inside top k, but not found—small compared with excusable.

3. found, and estimated incorrectly—small compared with

excusable.
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Exactly £ Terms Output

Algorithm:
1. Get & with |7 —z)* < (1 +€) ||z — =™
2. Estimate each x; by 7; with |z; — ;% < MMN?

3. Output top k terms of z, i.e., T

58



Exactly k£ Terms Output: Proof

Sources of error:
1. Terms in K \ I (small; already shown)
2. Error in terms we do take (small; already shown)

3. Error from mis-ranking

e if £+ 1 terms are about equally good, we won’t know for

sure which are the £ biggest.

59



Exactly £ Terms Output: Misranking

Idea: only displace one term for another if their magnitudes are
close. Some care needed to keep quadratic dependence on e.

Let y be a vector of terms in top k£ that are displaced by an equal
number of terms not in the top k, the vector z. Both y and z have
length at most k. y; is displaced by z;.

Assume we have found and estimated all terms in y (else don’t

care; these terms are small.)

60



Exactly k£ Terms Output: Proof

By the triangle inequality,

il < |yl + |y — vl
zi| = |z = |z — 2
Thus
il =zl <yl = |z + |y — vl + |z — 2
< yi —uil + |z — Zi]
m Mm)\ mxo\\&
Thus

ly] = |2]|| < 2/ Eke.
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Exactly k£ Terms Output: Proof

Continuing...

e Eke
Hylll = iyl <Nzl + gl = [=]]]

VAN

Iz

SO

Hyl + =l < 2zl + [lly] — |2l
< 2/Fge + 2e\/FExe
< 3yFke,
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Exactly k£ Terms Output: Proof

so, finally,

2 2
lyll™ =]l

VANNEN VAN VAN

2 2
™ = NlI=[1
(yl + 1zl lyl = 1=1)
Iyl =+ 1211 [yl = 1]

Mw‘/\ .mwﬂo . Mm)\ .mwﬂo

@mmxo .
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Overview of Summaries

Heavy Hitters

Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
Piecewise-linear

Range queries
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Finding Other Heavy Things

E.g., Fourier coeflicients.
Important by themselves

Useful toward other kinds of summaries
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Orthonormal bases

Columns of U is ONB if columns of U are perpendicular and unit
Fuclidean length. Thus

| =k

0, otherwise.
E.g.:
e Fourier basis

e Haar wavelet basis

66



Decompositions and Parseval

Let {¢;} be ONB. Then, for any =z,

T =Y ()b

MU A.&u\%@vw — MUHW

J

and
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Haar Wavelets, Graphically
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Heavy Hitters under Orthonormal
Change of Basis

Have vector x = UZx, where T is sparse

Process stream by transforming &:

e Collect &7 = ®(U~'U)z = (U 1)7.
Answer queries:

e Recover heavy hitters in &

e Implicitly recover heavy U-coeflicients of x.

Alternatively, transform updates...
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Haar Wavelets—per-Item Time

See “add v to x;”
Want to simulate changes to z = U !z

Y

Regard as “add v to z;” as “add ve; to x”

Decompose ve; into its Haar wavelet components,

ve; = MU@ (€5, 15) ;.
J

Key: (e;, 1) = 0 unless i € supp(¢;).
e Just O(log(d)) such j’s—O(log(d)) x;’s change.
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Overview of Summaries

Heavy Hitters

Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
Piecewise-linear

Range queries
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Histograms

Still see stream of additive updates: “add v to x;” Want B-piece

piecewise-constant representation, h, with
|h =z < (1+€)[[hopt — |-

We optimize boundary positions and heights.
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Number of employees
A

Salary
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Histograms—Algorithm Overview

Key idea: Haar wavelets and histograms simulate each other
efficiently.

e t-term wavelet is O(t)-bucket histogram

e B-bucket histogram is O(B log(d))-term wavelet rep’n
Next, class of algorithms with varying costs and guarantees:

e Get good Haar representation

e Modify it into a histogram
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Simulation

Histograms simulate Haar wavelets:

e Each Haar wavelet is piecewise constant with 4 pieces (3
breaks), so t terms have 3t breaks (3t + 1) pieces.

Haar wavelets simulate histograms:

e If A is a B-bucket histogram and 1;’s are wavelets, then

% N@ — Mu. Abuﬁuvﬁu
& (h, ;) = 0 unless supp(v;) intersects a boundary of h.

& < O(log(d)) such wavelets; < O(log(d)) terms in a B-bucket
histogram.
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Algorithm 1

1. Get O(Blog(d))-term wavelet rep’n w with
lw = zf] < (1+€) [[hops — |-

2. Return w as a O(Blog(d))-bucket histogram

Compared with optimal, O(log(d)) times more buckets and (1 + ¢)

times more error—a (O(log(d)), 1 + €)-approximation.

We can do better...
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Algorithm 2

1. Get O(Blog(d))-term wavelet rep’n w with
lw = zf] < (1+€) [[hops — |-

2. Returnn best B-bucket histogram h to w. (How? soon.)

Get a (1,3 + o(1))-approximation:

lh =zl < b =w|+ w2z
< lhopt — wl[ + [Jw — z|
< lhopt — 2|l + 2 [Jw — x|
< (34 2¢) [[hopt — ],
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Algorithm 3

1. Get O(Blog(d)log(1/e)/e?)-term wavelet rep'n w with
lw —zl} < (14 ¢€) [|hopr — 2| -
2. Possibly discard some terms, getting a robust wyop-
3. Output best B-bucket histogram h to wyp.
Get a (1,1 + €)-approximation. Next:
e What is “robust?”

e Proof of correctness.

e How to find A from w,p.

79



Robust Representations

Assume exact estimation (We’ve shown estimation error is

dominated by other error.)

Have O(Blog(d)log(1/¢€)/e?)-term repn, w.

Let B’ = 3Blog(d) (hist to wavelet simulation expression)
Consider w gy, wep), -

Let w,o, be

® < |lwryss

P wiey, |[wes.G+BY)
ro -
w, otherwise.

“Take terms from top until there is little progress.”

80



Robust Representation, Continued
Progress

Continued progress on w implies very close to x.

Am drops exponentially in j:

|lwis.+1B)
1. Group terms, 2/¢* per group.

2. Each group has twice the energy of the remaining terms, i.e.,
twice the energy of the remaining groups, so at least twice the

energy of the next group.
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Robust Representation, Continued
Progress

Terms drop off exponentially. Thus

| — wron |z — wl|®

VAN

d || wasy ||
7M

VAN

2
¢ :\SE\..wmg
Aw

VAN

e ||z —wa.py

E(1+¢) ||z — hop||”

VAN

Need T = (1/¢€)?log(d/e?) repetitions, so

(1 -t =¢€?/d.
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Robust Representation, Continued
Progress

Note: ||z — w(pn|| < (1+€) ||z — hopt|, i-e., w(p) is accurate

enough. (It has too many terms.)

Final guarantee:

1h — |

IA

h — 8Hﬁo_o__ + :\Ewo_o - H__

INA

bowﬁ — ngU: + __\Sao_o — &.:

INA

bowﬁ o H: + 2 :gwo_o - M~w__

(1 + 3€) || hopt — || -

IA

Adjust €, and we're done.
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Robust Representation, No Progress

No progress on w implies no progress on :

” < |lwrnea

|wisr.j11)8)

implies

VAN

2 2
| e |JzGnp|

<l = hoptl”

ZEE\..@.ES

So, the best linear combination, r, of w,., and any B-bucket

histogram isn’t much better than w;qp.
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Robust Representation, No Progress

Y

Wrob ~ T

Wrob
ho
pt

Approximately: ||h — 7| < ||hopt — 7||, 50 ||k — 2| < ||hopt — x|
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Robust Representation, No Progress

|z — wyob|| and ||wrob — hopt|| are bounded.

IN

(1+¢€) |x — hopt ||
(3+¢€)3 ||z — hl.

__M~w - \Ewo_o__

INA

lwrob — Rops]|

Also,

|17 = wrob || < €|z — hops]| -
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Robust Representation, No Progress

We have
lh—=|* = |[h=r[*+[r — =
< (Ih = wropll + lwron, — r[)°
+(lz = wron | — [[wrob — 7])?
< b = wrob||® + [[twrob — 7||* 4 |2 — weob |’
+ [[wrob — ﬁ__w + 2| — wiob || - [[wrob — 7|
< hopt = weob|* + lwron = 7I” + [l = wyop |
+ [[wrob = 71" + 2 [[Popt, = weon || - [[weo = 7
< hopt = weob|” + |2 = weop |

+9- e[|z — hops”
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Robust Representation, No Progress

...and, similarly,

| Popt — |

>

'V

Vv

lhops — 71" + I’ — 2|

(I1Popt — Wbl — [lwron — '[1)?
+([| = wrob|l = lweon — '[1)?

1hopt — Wrobl|” + 2 [[wron — ||I” + |2 — wron ||’
—2 || hopt — Wrob || - lwrob — 7|
—2 ||z — wrobl| - lwron — 7|

__bowﬁ - SSU:M + ||z — SBU__M

—9 e ||z — hopt” -
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Robust Representation, No Progress

So

or

2 2 2
lh = 2| = llhops — 2" < 18- €+ [lz — hopt ",

|7 —z]|* < (1+18€) | hopt — ]
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Warmup: Best Histogram, Full Space

Want best B-bucket histogram to x. Use dynamic programming,
based on the following recursion. Define

e Err|j, k| = error of best k-bucket histogram to x on [0, 7).

e Cost[j,j'] = error of best 1-bucket histogram to x on [j, j').

So:

Err(j, k| = mmb Err[l, k — 1] 4+ Cost|[l, j).
<J

“k — 1 buckets on [0, ¢) and one bucket on [, j). Take best £.”
Runtime: j < d, k < B,l < d; total O(d*B).
Can construct actual histogram (not just error) as we go (keep the

¢’s that witness the minimization).
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Prefix array

From x, construct Px: xo,xo + 21,20 + 21 + 22, .
Also Px?.

Can get Cost[l, j] from £ and j in constant time:
® v+ xpp1+ -+ = (Px); — (Px)s.

e Best height is average pu = } ((Px)e — (Px);).

e Erroris } ,,(xi — w?=>"a? —2u> x; + p?.
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Best Histogram to Robust
Representation

Want best B-bucket histogram h to wyop-
wlog, boundaries of A are among boundaries of w;y,.

Dynamic programming takes time O(|wyop|? - B), where |wyop| is

the number of boundaries in w;p,.
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Overview of Summaries

Heavy Hitters

Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
Piecewise-linear

Range queries
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Two-Dimensional Histograms

Approximation is constant on rectangles
Hierarchical (recursively split an existing rectangle) or general.

Theorem: Any B-bucket (general) partition can be refined into a
(4B)-bucket hierarchical partition.

Proof omitted; not needed for algorithm.

Aim: (1,1 + €)-approximate hierarchical histogram, which is a
(4,1 + €)-approx general histogram.
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2-D Histograms—Overall Strategy

Same overall strategy as 1-D:

e Find best B’-term rep’n over “tensor-product of Haar
wavelets.”

e Cull back to a robust representation, w;op

e Output best hierarchical histogram to wyop.
Next:

e What is tensor-product of Haar wavelets?

e How to find best B-bucket hierarchical histogram.
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Tensor products

Need ONB that simulates and is simulated by 1-bucket histograms.
Generally: (a® B)(z,y) = a(x)B8(y).

Use tensor product of Haar wavelets:
Vik(T,y) =vi(z) - Yr(y).

Tensor product of ONBs is ONB.
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Processing Updates

Update to z leads to updates to O(log”(d)) tensor product of Haar

wavelets.

(Algorithm is exponential in the dimension, 2.)
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Dynamic Programming

Want best hierarchical h to wyqp.
Boundaries of h can be taken from boundaries of w,p.

Best j-cut hierarchical h has:
e a full cut (horiz or vert, say vert)
e a k-cut partition on the left
e a (j — 1 — k)-cut partition on the right.

Runtime: polynomial in boundaries of w,,, and desired number of
buckets.
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Overview of Summaries

Heavy Hitters

Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
Piecewise-linear

Range queries

99



Piecewise-linear representations

Want best B-bucket pw-linear approx to .

Same overall strategy:

e Find best “linear multiwavelet” representation

e Cull back to a robust representation, wyop

e Output best B-bucket piecewise-linear representation to wyep-
Next:

e What are linear multiwavelets?

e How to find best B-bucket piecewise-linear representation.
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Linear Multiwavelets, Graphical
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Linear Multiwavelets
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Linear Multiwavelets: Properties

e ONB

e Linear Multiwavelets and pw-linear representations simulate
each other with O(log(d))-factor blowup
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Best Piecewise-Linear Representation

Have wyon, (pw-linear rep’n with B’ =~ B - log(d) /e pieces)
Want best B-bucket pw-linear repn h to w.o,. Recall best 1-bucket

repn to x is
(@, ) b + (x, 9) b,

where 1) is constant and ¢ is slant.

Need

e New prefix arrays

e “Dual Dynamic Programming;” cost polynomial in Blog(d)/e.
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Prefix arrays:

o Get (z,1) from Px
o Get (z,¢) from P(z - ¢) and Pz
e Errorof a- 9 +b- ¢ to x is
lz—(a-v+b-Q)I° =(z—(a-¥+b-¢),x—(a-p+b-¢)).
Also need P(x?).
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Dual Dynamic Programming

Define Far[k, m| as the biggest j such that there’s a k-bucket

histogram on [0, j) with error at most m (in appropriate units).
Assume we know E with w@ < Eopt < L.

Consider m = 0,eE/B,2¢E/B,...,2E. (B/e possibilities for m;
coarse granularity leads to e/ B extra error per boundary—eF in
all).

Thus: Far|k, m] = max,{j : n 4+ Cost|[Far[k — 1,n], j] < m}.

“Go as far as we can with k£ — 1 buckets and error n, then add 1
bucket. Try all n.”

Runtime: £k < B, m < B/e, n < B/e, find j by binary search:
O(B3log(d)/e?).
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Rangesum histograms

Given x, want pw-constant h to optimize range queries to x:

2| 2 hw

l,r 0<a<lr

Height h of a bucket affects many non-local queries.

Foils previous tricks. Instead, transform to prefix domain.
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Transform to Prefix domain

= Y (P(h—))}+ (P(h—x)); —2P(h — ), P(h— z),
l,r

= 2d)» ((Ph)e— (Pz);)* (we'll make ", P(h—z), =0.)
14

— 2d||Ph — Pz,

Get point-query problem.
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Prefix array of histograms

If h is pw-constant, then Ph is piecewise-linear connected

Do not know how to find near-best pwlc approx to given Px
(equivalent to original problem).

Find near-best B-bucket pw-linear (disconnected) approx to Px

under point queries.

Leads to (2B)-bucket pw-constant repn for range queries to .
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Simulate /Invert Prefix Array

When reading x, simulate reading Px:
e “add 5 to x3” becomes “add 5 to (Px)s, (Pz)4, (Px)s5,...”

e Affects only O(log(d)) linear multiwavelets (whose support

includes 3).

From Ph, recover h; = (A(Ph)); = (Ph);11 — (Ph);.
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Overall algorithm

When reading x, simulate reading Pz.

Find best (2B)-bucket pw-linear approx ¢ to Px under point

queries

Make sure avg({) = avg(Px). (Approximately enforced
automatically by optimality.)

Output Al as (2,1 + €) approximation, i.e., 2B buckets, (1 + ¢€)

times best error under range queries.
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Weak greedy sparse recovery
Orthonormal change of basis
Haar Wavelets

Histograms (piecewise constant)
Multi-dimensional (hierarchical)
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