Streaming Data

Martin J. Strauss University of Michigan

Sparse Approximation

National retailer sees a stream of transactions:

• 2 Thomas sold, 1 Thomas returned, 1 TSP sold ...

Implies vector x of item frequencies:

• 40 Thomas, 2 Lego, -30 TSP, ...

Goal: Track items with large-magnitude counts

Example Algorithm

Recover position and coefficient of single spike in signal.

Algorithmic Constraints

- Little time per item
- Little storage space
- Little time to answer queries

Fundamental Queries

Identification: Output a set that

- contains all "heavy" indices
- contains no "light" indices
- (medium weight: no constraint)

Estimation

• estimate large coefficients reliably.

Summaries

Fundamental queries can be used to build summaries:

- Fourier/Wavelet summaries

Piecewise-constant, piecewise-linear summaries

Other user queries can be answered from summary

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries

Setup

Design

ullet a matrix Φ and decoding algo D that work together.

Process Stream:

• Track $y = \Phi x$.

Answer queries:

• Output $D(\Phi x)$.

Processing Items

- See "add v to x_i "
- Read as "add vector ve_i to x"

$$\begin{cases} y \leftarrow \Phi x \\ x \leftarrow x + ve_i \\ y \leftarrow y + v\Phi e_i \end{cases}$$

Some Costs

Space:

• |y| plus space to store Φ .

Time per item:

- generate Φe_i
- Usually about proportional to |y|
- Sometimes much less if Φ is sparse

(Still need to analyze time for queries. Depends a lot on Φ and D.)

Warmup: One Spike, Low Noise

d columns and $\log(d)$ rows. (Deterministic and efficient)

If b^{ℓ} is ℓ 'th row of matrix, and spike is at i, need

$$|x_i| \ge 2.01 \sum j \ne i |x_j| \text{ or (weaker) } \forall \ell$$

$$|x_i| > 2.01 \left| \sum_{j
eq i} b_j^\ell x_j \right|.$$

Many Spikes? Group Testing

Example:

- 150 soldiers; 3 have syphilis
- Pool specimens into 6 random groups.
- "Many" groups have
- exactly one sick soldier
- about 1/6 of the dilution from healthy soldiers
- Perform 6 tests
- clear ≥ 3 groups—75 soldiers

Warmup II: L1 significance

Problem:

• Suppose $|x_i| > \frac{1}{k} \sum_{j \neq i} |x_j|$. Find i.

Solution: Hash...

• Keep $\frac{1}{12k}$ fraction of positions at random

- i.e., consider xr, where r is 0/1-valued

- With prob $\geq \frac{1}{12k}$, we keep i; i.e., $r_i = 1$.
- For each $j \neq i$, $E[|r_j x_j|] = \frac{1}{k}|x_j|$.

Warmup II: L1 significance

So

$$E\left[\sum_{j\neq i}|r_jx_j|\right] = \sum_{j\neq i}E[|r_jx_j|]$$
$$= \frac{1}{12k}\sum_{j\neq i}|x_j|$$

So, with prob $\geq 3/4$ (independently of whether $r_i = 1$)

$$\sum_{j \neq i} |r_j x_j| \leq \frac{1}{3k} \sum_{j \neq i} |x_j|$$

$$< \frac{1}{3} |x_i r_i|.$$

Repeat, and proceed as above!

Digression: Linearity of Expectation

Recall that a random variable is a function on a sample space.

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega)$$
Then $E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega)$, and so
$$E[X+Y] = \sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) \Pr(\omega)$$

$$= \sum_{\omega \in \Omega} X(\omega) \Pr(\omega) + \sum_{\omega \in \Omega} Y(\omega) \Pr(\omega)$$

||

E[X] + E[Y].

Digression: Markov

Theorem: If X is a non-negative random variable and a > 0, then

$$\Pr(X \ge a) \le E[X]/a.$$

Proof:

$$E[X] = \sum_{x} x \Pr(X = x)$$

$$\geq \sum_{x \geq a} a \Pr(X = x)$$

$$= a \Pr(X \geq a).$$

E.g., $\Pr(X \ge 4E[X]) \le 1/4$.

Repeat

Pr(success)
$$\geq \frac{3}{4} \cdot \frac{1}{4k} = \frac{3}{16k} > \frac{1}{6k}$$

Pr(failure) $< 1 - \frac{1}{6k}$.

Repeat 6k times, independently.

$$Pr(all failures) < \left(1 - \frac{1}{6k}\right)^{6k} \approx 1/e \approx .37 < .5.$$

Repeat total of 6km times.

- Modest cost.
- $Pr(\text{all failures}) < 2^{-m}$.

Putting it together

Collect repeated r's into matrix, R.

Take row tensor product $R \otimes_{\mathbf{r}} B$ with bit testing matrix, B:

rows are $\{rb: r \text{ is row of } R, b \text{ is row of } B\}$

Row Tensor Product, E.g.

$$R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

SO

Warmup III: L2 significance

Problem: Suppose now that $x_i^2 > \frac{1}{k'} \sum_{j \neq i} x_j^2$; want to find i.

• Note: stronger statement than before.

Solution:

- Multiply each x_i by random ± 1 first
- Keep $\frac{1}{36k'}$, at random
- i.e., consider rsx, where
- s has random signs
- -r is random mask

Warmup III: L2 significance

Still keep i with prob'y $\frac{1}{12k'}$ (Assume this.)

$$E\left[\left(\sum_{j\neq i}b_{j}r_{j}s_{j}x_{j}\right)^{2}\right] = E\left[\sum_{j,\ell\neq i}b_{j}b_{\ell}r_{j}r_{\ell}s_{j}s_{\ell}x_{j}x_{\ell}\right]$$

$$= E_{r}\left[\sum_{j,\ell\neq i}E_{s}[s_{j}s_{\ell}]r_{j}r_{\ell}b_{j}b_{\ell}x_{j}x_{\ell}\right]$$

$$= E_{r}\left[\sum_{j\neq i,b_{j}=1}r_{j}x_{j}^{2}\right]$$

$$= \sum_{j\neq i,b_{j}=1}E[r_{j}]x_{j}^{2} = \frac{1}{12k'}\sum_{j\neq i,b_{j}=1}x_{j}^{2} < \frac{1}{12}x_{i}^{2}.$$

Warmup III: L2 significance

With prob $\geq 3/4$,

$$\left(\sum_{j\neq i} b_j r_j s_j x_j\right)^2 < \frac{1}{9} x_i^2,$$

0r

$$\sum_{j\neq i} b_j r_j s_j x_j < \frac{1}{3} |r_i s_i x_i|.$$

(Extra repetitions are needed to make **all** b^{ℓ} work simultaneously.)

Proceed as above.

Digression: Expectation of a product

Theorem: If X and Y are independent, then E[XY] = E[X]E[Y].

Proof:

$$E[XY] = \sum_{x,y} xy \Pr(X = x \text{ and } Y = y)$$

$$= \sum_{x,y} xy \Pr(X = x) \Pr(Y = y)$$

$$= E[X]E[Y].$$

Digression: Cauchy-Schwarz Inequality

Theorem:

$$\frac{1}{d} \left(\sum_{i=1}^{d} |x_i| \right)^2 \le \sum_{i=1}^{d} x_i^2 \le \left(\sum_{i=1}^{d} |x_i| \right)^2;$$

either equality is possible.

Cauchy-Schwarz Inequality: Implication

Thus, if $|x_i| > \sum_{j \neq i} |x_j|$ then

$$|x_i|^2 > \left(\sum_{j \neq i} |x_j|\right)^2 > \sum_{j \neq i} x_i^2.$$

But, if $|x_i|^2 > \sum_{j \neq i} |x_j|^2$, then all we know is

$$|x_i| > \sqrt{\sum_{j \neq i} x_i^2} > \frac{1}{\sqrt{d}} \sum_{j \neq i} |x_j|.$$

Weaker by the large factor \sqrt{d} .

Cauchy-Schwarz Inequality: Proof

For $\sum x_i^2 \le (\sum |x_i|)^2$:

$$\sum_{i} x_i^2 \le \sum_{i,j} x_i x_j = \left(\sum_{i} x_i\right)^2$$

Pick out diagonal; Equality if there is only one term.

Cauchy-Schwarz Inequality: Proof

For $\frac{1}{d} \left(\sum |x_i| \right)^2 \le \sum x_i^2$, need

$$\sum_{i=1}^{a} x_i = \langle x, 1 \rangle \le ||x|| \cdot ||1|| = ||x|| \cdot \sqrt{d}.$$

We'll show $\langle x, y \rangle \le ||x|| \, ||y||$.

Can normalize; assume ||x|| = ||y|| = 1. Then

$$0 \le \langle x - y, x - y \rangle = ||x||^2 + ||y||^2 - 2\langle x, y \rangle.$$

if) x and y are proportional So $\langle x, y \rangle \le \left(\|x\|^2 + \|y\|^2 \right) / 2 = 1 = \|x\| \cdot \|y\|$. Equality if (and only

On to Estimation

Let s be a random ± 1 -valued random vector.

Atomic estimator for x_i is $X = s_i \langle x, s \rangle$. Then

$$X = s_i \sum_j s_j x_j = \sum_j s_i s_j x_j,$$

SO

$$E[X] = \sum_{j} E[s_i s_j] x_j = x_i.$$

Need to bound variance.

Estimation: Variance

Also

$$ext{var}(X) = E[X^2] - x_i^2$$

$$= E\left[\sum_{j,\ell} s_j s_\ell x_j x_\ell\right]$$

$$= \sum_{j,\ell} E\left[s_j s_\ell\right] x_j x_\ell$$

$$= \sum_{j \neq i} x_j^2.$$

Standard deviation small/bounded in terms of target value.

Markov/Chebychev

Theorem: For a > 0,

$$\Pr(|X - E[X]| \ge a) \le \operatorname{var}(X)/a^2.$$

Proof:

$$\Pr((X - E[X])^2 \ge a^2) \le \text{var}(X)/a^2.$$

Get
$$\Pr(|X - x_i| \ge 3||x||) \le 1/9$$
.

Better distortion

 $\operatorname{var}(Y) = \frac{1}{m} \operatorname{var}(X).$ Let Y be the average of m copies of X. Then E[Y] = E[X] and

Get

$$\Pr\left(|Y - x_i| \ge \frac{3}{m} \|x\|\right) \le \frac{1}{9}.$$

Digression: Improving Variance

 $var(Y) = \frac{1}{m} var(X)$. Proof: Theorem: Let Y be the average of m copies of X. Then

Let
$$\mu = E[X] = E[Y]$$
.

Then
$$E[X - \mu] = 0$$
 and

$$var(X - \mu) = E[(X - \mu - 0)^{2}] = var(X).$$

Digression: Improving Variance

So assume E[X] = E[Y] = 0. Then

$$\operatorname{var}(Y) = E[Y^{2}] = E\left[\left(\frac{1}{m}\sum X_{i}\right)^{2}\right]$$

$$= \frac{1}{m^{2}}\sum_{i,j}E[X_{i}X_{j}], \text{ using independence}$$

$$= \frac{1}{m^{2}}\sum_{i}E[X_{i}^{2}]$$

$$= \frac{1}{m}E[X^{2}].$$

Better failure probability.

Theorem: Suppose Pr(Y is bad) < 1/9.

 $\Pr(Z \text{ is bad}) < 2^{-\Omega(l)}.$ Let Z be the median of l independent copies of Y. Then

Proof: Z is bad only if at least half of the Y's are bad. Apply Chernoff.

Digression: Chernoff Bounds

Theorem: Suppose each of $n Y_i$'s is independent with

$$Y_i = \begin{cases} 1-p, & \text{with probability } p; \\ -p, & \text{with probability } 1-p. \end{cases}$$

Let $Y = \sum_{i} Y_{i}$. If a > 0, then

$$\Pr(Y > a) < e^{-2a^2/n}.$$

Chernoff: Proof

(Just for p = 1/2, so Y_i is $\pm 1/2$, uniformly.)

Lemma: For $\lambda > 0$, $\frac{e^{\lambda} + e^{-\lambda}}{2} < e^{\lambda^2/2}$. (Proof: Taylor.)

$$E[e^{2\lambda \sum Y_i}] = \prod E[e^{2\lambda Y_i}]$$

$$= \left(\frac{e^{\lambda} + e^{-\lambda}}{2}\right)^n$$

$$< e^{\lambda^2 n/2}.$$

Chernoff, cont'd

$$\Pr(Y > a) = \Pr(e^{2\lambda Y} > e^{2\lambda a})$$

$$\leq \frac{E[e^{2\lambda Y}]}{e^{2\lambda a}}$$

$$\leq e^{\lambda^2 n/2 - 2\lambda a}.$$

Put $\lambda = 2a/n$; get

$$\Pr(Y > a) < e^{-2a^2/n}.$$

To this point

Find all i such that $x_i^2 > \frac{1}{k} \sum_{j \neq i} x_j^2$, with failure probability $2^{-\ell}$.

Need poly (k, ℓ) rows in the matrix $B \otimes_{\mathbf{r}} S \otimes_{\mathbf{r}} R$; comparable

Estimate each x_i up to $\pm \epsilon ||x||$ with failure probability $2^{-\ell}$.

• Need poly(ℓ/ϵ) rows; comparable runtimes.

Space

To this point, fully random matrices.

• Expensive to store!

But...

- Need only pairwise independence within each row
- (sometimes need full independence from row to row, but this is usually ok).
- i.e., two entries r_j and r_ℓ in the same row need to be independent, but three entries may be dependent.
- This can cut down on needed space.

Pairwise Independence: Construction

Random vector s in $\pm 1^d$ (equivalently, \mathbb{Z}_2^d)

Index i is a 0/1 vector of length $\log(d)$, i.e., $i \in \mathbb{Z}_2^{\log(d)}$.

Pick vector $q \in \mathbb{Z}_2^{\log(d)}$ and bit $c \in \mathbb{Z}_2$.

Define $|s_i = c + \langle q, i \rangle \mid \pmod{2}$.

probability. Then, if $i \neq j$, then (s_i, s_j) takes all four possibilities with equal

Pairwise Independence: Proof

 s_i is uniform because c is random.

Conditioned on s_i , s_j is uniform:

- $s_i + s_j = (c + \langle q, i \rangle) + (c + \langle q, j \rangle) = \langle q, i + j \rangle$

Sufficient to show that $s_i + s_j$ is uniform.

- $i \neq j$, so they differ on some bit, the ℓ th.
- As q_{ℓ} varies, $s_i + s_j$ varies uniformly over \mathbb{Z}_2 .

Pairwise independence, for r

two buckets. Get bucket label bit-by-bit. Hashing into one of k buckets. Take $\log(k)$ independent hashes into

Space, again

For each row s, need only store q and c: $\log(d) + 1$ bits.

For each row r, need only $\log(k)$ copies of q and c: $O(\log(d)\log(k))$

(Many other constructions are possible.)

All Together—Heavy Hitters

- probability $2^{-\ell}$. Find all i such that $x_i^2 > (1/k) \sum_{j \neq i} x_j^2$, with failure
- Estimate each x_i up to $\pm \epsilon ||x||$ with failure probability $2^{-\ell}$.
- Space, time per item, and query time are $poly(k, \ell, \log(d), 1/\epsilon)$.

Sparse Recovery

Next topic: Sparse Recovery.

Fix k and ϵ .

Want \widetilde{x} such that

$$\left\|\widetilde{x} - x\right\|_2 \le \left(1 + \epsilon\right) \left\|x_{(k)} - x\right\|_2.$$

Here $x_{(k)}$ is best k-term approximation to x.

Will build on heavy hitters.

Sparse Recovery: Issue

Suppose k = 10 and coefficient magnitudes are

 $1, 1/2, 1/4, 18, 1/16, \dots$

Want to find top k terms in time poly(k), not time 2^k .

well terms with magnitude around 1/k—about $\log(k)$ terms. Heavy Hitters algorithm only guarantees that we find and estimate

Weak Greedy Algorithm

- Find indices of heavy terms in x
- Estimate their coefs, getting intermediate rep'n r.
- Recurse on x r.

iterative subroutine here

Weak Greedy Algorithm

After removing top few terms, others become relatively larger.

Can get sketch $\Phi(x-r)$ as $\Phi x - \Phi r$

At this point, \tilde{x} may have more than k terms (to be fixed).

Weak greedy—may not find the heaviest term.

Iterative Estimation

Have: a set I of k indices, parameter ϵ

satisfies Want: coefficient estimates so that the resulting approximation \widetilde{x}

$$\|\widetilde{x} - x\| \le (1 + \epsilon) \|x - x_I\|.$$

Define

- I^{c} be the complement of I.
- $E_I = \sum_{i \in I} |x_i|^2$ be original energy in I
- $\widetilde{E}_I = \sum_{i \in I} |x_i \widetilde{x}_i|^2$ to be energy in *I after* one round of
- $\Delta = E_I/E_{I^c}$ to be the dynamic range.

Iterative Estimation: Algorithm

Have: a set I of k indices, parameter ϵ

satisfies Want: coefficient estimates so that the resulting approximation \widetilde{x}

$$\|\widetilde{x} - x\| \le (1 + \epsilon) \|x - x_I\|.$$

Repeat $\log(\Delta/\epsilon)$ times

- 1. estimate each x_i for $i \in I$, by \widetilde{x}_i with $|\widetilde{x}_i x_i|^2 < \frac{\epsilon}{2k(1+\epsilon)}\widetilde{E}_i^c$.
- 2. update x.

Iterative Estimation: Proof

Get: $\widetilde{E}_I \leq \frac{\epsilon}{2(1+\epsilon)} (E_I + E_{I^c}).$

Case $E_I > \epsilon \cdot E_{I^c}$:

$$\widetilde{E}_{I} \leq \frac{\epsilon}{2(1+\epsilon)} \frac{\epsilon}{(E_{I}+E_{I^{c}})}$$

$$\leq \frac{\epsilon}{2(1+\epsilon)} E_{I} + \frac{1}{2(1+\epsilon)} E_{I}$$

$$= \frac{1}{2} E_{I}.$$

iterations Geometric improvement. Get down to ϵE_{I^c} if this case holds for all

Iterative Estimation: Proof

Case $E_I \leq \epsilon \cdot E_{I^c}$:

$$\widetilde{E}_{I} \leq \frac{\epsilon}{2(1+\epsilon)} (E_{I} + E_{I^{c}})$$

$$\leq \frac{\epsilon}{2} E_{I^{c}}.$$

 $\epsilon E_{I^{
m c}}.$ E_I fluctuates only in the range 0 to $\frac{\epsilon}{2}E_{I^c}$ after dropping below

Iterative Identification

Similar to estimation

Repeat $\log(\Delta/\epsilon)$ times

- 1. Identify indices i with $|x_i|^2 > \frac{\epsilon}{4k(1+\epsilon)}\widetilde{E}_{i^c}$.
- 2. Estimate each x_i , for $i \in I$, by \widetilde{x}_i with $\widetilde{E}_I \leq E_{I^c}$
- 3. update x.

Final estimation:

•
$$\widetilde{E}_I \leq \frac{\epsilon}{3} E_{I^c}$$
.

Iterative Identification: Proof

First: Estimation errors do not substantially affect Identification.

Issue:

- Have a set I of indices for intermediate r.
- We'll identify positions in x-r
- Values in $(x-r)_I$ are based on estimates and may be larger than x_I
- ...contribute extra noise; obstacle to identification.

compared with Identify i if $|x_i|^2$ large compared with E_{i^c} , so get i if $|x_i|^2$ large

$$E_I > (1 - \epsilon)\widetilde{E} > (1 - \epsilon)\widetilde{E}_{i^c}$$
.

Iterative Identification: Proof

Among top k, miss a total of at most

$$E_{K\setminus I} \le \frac{\epsilon}{2(1+\epsilon)} E = \frac{\epsilon}{2(1+\epsilon)} (E_K + E_{K^c}).$$

Case $E_K > \epsilon E_{K^c}$:

$$E_{K \setminus I} \leq \frac{\epsilon}{2(1+\epsilon)} (E_K + E_{K^c})$$

$$< \frac{\epsilon}{2(1+\epsilon)} E_K + \frac{1}{2(1+\epsilon)} E_K$$

$$= \frac{1}{2} E_K.$$

Iterative Identification: Proof

Case $E_K \leq \epsilon E_{K^c}$:

$$E_{K\setminus I} \leq \frac{\epsilon}{2(1+\epsilon)} (E_K + E_{K^c})$$

 $\leq \frac{\epsilon}{2} E_{K^c}.$

Either case, identify enough.

Iterative Identification—proof

Three sources of error:

- 1. outside top k—excusable.
- 2. inside top k, but not found—small compared with excusable.
- 3. found, and estimated incorrectly—small compared with excusable.

Exactly k Terms Output

Algorithm:

- 1. Get \tilde{x} with $\|\tilde{x} x\|^2 \le (1 + \epsilon) \|x_{(k)} x\|^2$.
- 2. Estimate each x_i by \widetilde{x}_i with $|x_i \widetilde{x}_i|^2 \leq \frac{\epsilon^2}{k} E_{K^c}$.
- 3. Output top k terms of \widetilde{x} , i.e., $\widetilde{x}_{(k)}$

Sources of error:

- 1. Terms in $K \setminus I$ (small; already shown)
- 2. Error in terms we do take (small; already shown)
- 3. Error from mis-ranking
- if k+1 terms are about equally good, we won't know for sure which are the k biggest.

Exactly k Terms Output: Misranking

close. Some care needed to keep quadratic dependence on ϵ Idea: only displace one term for another if their magnitudes are

number of terms not in the top k, the vector z. Both y and z have length at most k. y_i is displaced by z_i . Let y be a vector of terms in top k that are displaced by an equal

care; these terms are small.) Assume we have found and estimated all terms in y (else don't

By the triangle inequality,

$$|y_i| \leq |\widetilde{y}_i| + |y_i - \widetilde{y}_i|$$

$$\frac{|z_i|}{|z_i|} \geq \frac{|\widetilde{z}_i|}{|z_i|} - |z_i - \widetilde{z}_i|$$

Thus

$$|y_{i}| - |z_{i}| \leq |\widetilde{y}_{i}| - |\widetilde{z}_{i}| + |y_{i} - \widetilde{y}_{i}| + |z_{i} - \widetilde{z}_{i}|$$

$$\leq |y_{i} - \widetilde{y}_{i}| + |z_{i} - \widetilde{z}_{i}|$$

$$\leq 2\epsilon \sqrt{E_{K^{c}}/k}$$

Thus

$$|||y| - |z||| \le 2\epsilon \sqrt{E_{K^c}}.$$

Continuing...

$$|||z||| = ||z|| \le \sqrt{E_{K^c}}$$
 $|||y||| = ||y|| \le ||z|| + |||y| - |z|||,$

$$||y||| = ||y|| \le ||z|| +$$

 \cos

$$\begin{aligned} |||y| + |z|| & \leq 2 ||z|| + |||y| - |z||| \\ & \leq 2 \sqrt{E_{K^c}} + 2\epsilon \sqrt{E_{K^c}} \\ & \leq 3 \sqrt{E_{K^c}}, \end{aligned}$$

so, finally,

$$||y||^{2} - ||z||^{2} = |||y|||^{2} - |||z|||^{2}$$

$$= \langle |y| + |z|, |y| - |z| \rangle$$

$$\leq |||y| + |z|| \cdot |||y| - |z||$$

$$\leq 3\sqrt{E_{K^{c}}} \cdot 2\epsilon\sqrt{E_{K^{c}}}$$

$$\leq 6\epsilon E_{K^{c}}.$$

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries

Finding Other Heavy Things

E.g., Fourier coefficients.

Important by themselves

Useful toward other kinds of summaries

Orthonormal bases

Euclidean length. Thus Columns of U is ONB if columns of U are perpendicular and unit

$$\langle \psi_j, \psi_k \rangle = \begin{cases} 1, & j = k \\ 0, & \text{otherwise.} \end{cases}$$

F.g.:

- Fourier basis
- Haar wavelet basis

Decompositions and Parseval

Let $\{\psi_j\}$ be ONB. Then, for any x,

$$x = \sum \langle x, \psi_j \rangle \, \psi_j.$$

and

$$\sum_{j} \langle x, \psi_j \rangle^2 = \sum_{i} x_i^2$$

Haar Wavelets, Graphically

0	0	0	<u> </u>	0	<u> </u>	<u> </u>	+
0	0	0	+	0			+
0	0		0	0	+	<u> </u>	+
0	0	+	0	0	+	<u> </u>	+
0	<u> </u>	0	0	<u> </u>	0	+	+
0	+	0	0	<u> </u>	0	+	+
<u> </u>	0	0	0	+	0	+	+
+	0	0	0	+	0	+	+

Heavy Hitters under Orthonormal Change of Basis

Have vector $x = U\widehat{x}$, where \widehat{x} is sparse

Process stream by transforming Φ :

• Collect $\Phi \widehat{x} = \Phi(U^{-1}U)\widehat{x} = (\Phi U^{-1})\widehat{x}$.

Answer queries:

- Recover heavy hitters in \hat{x}
- Implicitly recover heavy U-coefficients of x.

Alternatively, transform updates...

Haar Wavelets—per-Item Time

See "add v to x_i "

Want to simulate changes to $\hat{x} = U^{-1}x$

Regard as "add v to x_i " as "add ve_i to x"

Decompose ve_i into its Haar wavelet components,

$$ve_i = \sum_j v \langle e_i, \psi_j \rangle \psi_j.$$

Key: $\langle e_i, \psi_j \rangle = 0$ unless $i \in \text{supp}(\psi_j)$.

• Just $O(\log(d))$ such j's— $O(\log(d))$ \widehat{x}_j 's change.

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries

Histograms

Still see stream of additive updates: "add v to x_i " Want B-piece piecewise-constant representation, h, with

$$||h - x|| \le (1 + \epsilon) ||h_{\text{opt}} - x||.$$

We optimize boundary positions and heights.

Histograms-Algorithm Overview

efficiently. Key idea: Haar wavelets and histograms simulate each other

- t-term wavelet is O(t)-bucket histogram

B-bucket histogram is $O(B \log(d))$ -term wavelet rep'n

Next, class of algorithms with varying costs and guarantees:

- Get good Haar representation
- Modify it into a histogram

Simulation

Histograms simulate Haar wavelets:

Each Haar wavelet is piecewise constant with 4 pieces (3 breaks), so t terms have 3t breaks (3t+1) pieces

Haar wavelets simulate histograms:

If h is a B-bucket histogram and ψ_j 's are wavelets, then

- $\Leftrightarrow h = \sum_{j} \langle h, \psi_{j} \rangle \psi_{j}.$
- $\langle (h, \psi_j) \rangle = 0$ unless supp (ψ_j) intersects a boundary of h.
- $\diamond \leq O(\log(d))$ such wavelets; $\leq O(\log(d))$ terms in a B-bucket histogram.

Algorithm 1

1. Get $O(B \log(d))$ -term wavelet rep'n w with

$$||w - x|| \le (1 + \epsilon) ||h_{\text{opt}} - x||.$$

2. Return w as a $O(B \log(d))$ -bucket histogram

times more error—a $(O(\log(d)), 1 + \epsilon)$ -approximation. Compared with optimal, $O(\log(d))$ times more buckets and $(1+\epsilon)$

We can do better...

Algorithm 2

1. Get $O(B \log(d))$ -term wavelet rep'n w with

$$||w - x|| \le (1 + \epsilon) ||h_{\text{opt}} - x||.$$

2. Return best B-bucket histogram h to w. (How? soon.)

Get a (1, 3 + o(1))-approximation:

$$||h - x|| \le ||h - w|| + ||w - x||$$

$$\le ||h_{\text{opt}} - w|| + ||w - x||$$

$$\le ||h_{\text{opt}} - x|| + 2||w - x||$$

$$\le (3 + 2\epsilon) ||h_{\text{opt}} - x||,$$

Algorithm 3

1. Get $O(B \log(d) \log(1/\epsilon)/\epsilon^2)$ -term wavelet rep'n w with

$$||w - x|| \le (1 + \epsilon) ||h_{\text{opt}} - x||.$$

- 2. Possibly discard some terms, getting a robust $w_{\rm rob}$.
- Get a $(1, 1 + \epsilon)$ -approximation. Next: 3. Output best B-bucket histogram h to w_{rob} .

• What is "robust?"

- Proof of correctness.
- How to find h from w_{rob} .

Robust Representations

dominated by other error.) Assume exact estimation (We've shown estimation error is

Have $O(B \log(d) \log(1/\epsilon)/\epsilon^2)$ -term repn, w.

Let $B' = 3B \log(d)$ (hist to wavelet simulation expression)

Consider $w_{(B')}, w_{(2B')}, \dots$

Let $w_{\rm rob}$ be

$$w_{\text{rob}} = \begin{cases} w_{(jB')}, & ||w_{(jB'..(j+1)B')}||^2 \le \epsilon^2 ||w_{((j+1)B'..)}||^2 \\ w, & \text{otherwise.} \end{cases}$$

"Take terms from top until there is little progress."

Robust Representation, Continued Progress

Continued progress on w implies very close to x.

$$||w_{(jB'..(j+1)B')}||^2$$
 drops exponentially in j :

- 1. Group terms, $2/\epsilon^2$ per group.
- 2. Each group has twice the energy of the remaining terms, i.e., energy of the next group. twice the energy of the remaining groups, so at least twice the

Robust Representation, Continued Progress

Terms drop off exponentially. Thus

$$||x - w_{\text{rob}}||^{2} = ||x - w||^{2}$$

$$\leq d ||w_{\text{(last)}}||^{2}$$

$$\leq \epsilon^{2} ||w_{(B'..2B')}||^{2}$$

$$\leq \epsilon^{2} ||x - w_{(1..B')}||^{2}$$

$$\leq \epsilon^{2} (1 + \epsilon) ||x - h_{\text{opt}}||^{2}$$

Need $T = (1/\epsilon)^2 \log(d/\epsilon^2)$ repetitions, so

$$(1 - \epsilon^2)^T = \epsilon^2 / d.$$

Robust Representation, Continued Progress

enough. (It has too many terms.) Note: $||x - w_{(B')}|| \le (1 + \epsilon) ||x - h_{\text{opt}}||$, i.e., $w_{(B')}$ is accurate

Final guarantee:

$$||h - x|| \le ||h - w_{\text{rob}}|| + ||w_{\text{rob}} - x||$$

$$\le ||h_{\text{opt}} - w_{\text{rob}}|| + ||w_{\text{rob}} - x||$$

$$\le ||h_{\text{opt}} - x|| + 2||w_{\text{rob}} - x||$$

$$\le (1 + 3\epsilon) ||h_{\text{opt}} - x||.$$

Adjust ϵ , and we're done.

No progress on w implies no progress on x:

$$\|w_{(jB'..(j+1)B')}\|^2 \le \epsilon^2 \|w_{((j+1)B'..)}\|^2$$

implies

$$\|w_{(jB'..(j+1)B')}\|^2 \le \epsilon^2 \|x_{((j+1)B'..)}\|^2$$

 $\le \epsilon^2 \|x - h_{\text{opt}}\|^2$.

So, the best linear combination, r, of w_{rob} and any B-bucket histogram isn't much better than w_{rob} .

Approximately: $||h - r|| \le ||h_{\text{opt}} - r||$, so $||h - x|| \le ||h_{\text{opt}} - x||$.

 $||x - w_{\text{rob}}||$ and $||w_{\text{rob}} - h_{\text{opt}}||$ are bounded.

$$||x - w_{\text{rob}}|| \le (1 + \epsilon) ||x - h_{\text{opt}}||$$

 $||w_{\text{rob}} - h_{\text{opt}}|| \le (3 + \epsilon) 3 ||x - h||.$

Also,

$$||r - w_{\text{rob}}|| \le \epsilon ||x - h_{\text{opt}}||.$$

We have

$$||h - x||^{2} = ||h - r||^{2} + ||r - x||^{2}$$

$$\leq (||h - w_{\text{rob}}|| + ||w_{\text{rob}} - r||)^{2}$$

$$+ (||x - w_{\text{rob}}|| - ||w_{\text{rob}} - r||)^{2}$$

$$\leq ||h - w_{\text{rob}}||^{2} + ||w_{\text{rob}} - r||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$+ ||w_{\text{rob}} - r||^{2} + 2||h - w_{\text{rob}}|| \cdot ||w_{\text{rob}} - r||$$

$$\leq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + ||w_{\text{rob}} - r||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$+ ||w_{\text{rob}} - r||^{2} + 2||h_{\text{opt}} - w_{\text{rob}}|| \cdot ||w_{\text{rob}} - r||$$

$$\leq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$\leq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + ||x - w_{\text{rob}}||^{2}$$

...and, similarly,

$$||h_{\text{opt}} - x||^{2} = ||h_{\text{opt}} - r'||^{2} + ||r' - x||^{2}$$

$$\geq (||h_{\text{opt}} - w_{\text{rob}}|| - ||w_{\text{rob}} - r'||)^{2}$$

$$+ (||x - w_{\text{rob}}|| - ||w_{\text{rob}} - r'||)^{2}$$

$$\geq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + 2 ||w_{\text{rob}} - r'||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$-2 ||h_{\text{opt}} - w_{\text{rob}}|| \cdot ||w_{\text{rob}} - r'||$$

$$\geq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$\geq ||h_{\text{opt}} - w_{\text{rob}}||^{2} + ||x - w_{\text{rob}}||^{2}$$

$$-9 \cdot \epsilon \cdot ||x - h_{\text{opt}}||^{2}.$$

 S_{O}

$$||h - x||^2 - ||h_{\text{opt}} - x||^2 \le 18 \cdot \epsilon \cdot ||x - h_{\text{opt}}||^2,$$

or

$$||h - x||^2 \le (1 + 18\epsilon) ||h_{\text{opt}} - x||^2.$$

Warmup: Best Histogram, Full Space

based on the following recursion. Define Want best B-bucket histogram to x. Use dynamic programming,

- $\operatorname{Err}[j,k] = \operatorname{error} \text{ of best } k\text{-bucket histogram to } x \text{ on } [0,j).$
- Cost[j, j'] = error of best 1-bucket histogram to x on <math>[j, j').

 \circ

$$\operatorname{Err}[j,k] = \min_{\ell < j} \operatorname{Err}[\ell,k-1] + \operatorname{Cost}[l,j).$$

"k-1 buckets on $[0,\ell)$ and one bucket on $[\ell,j)$. Take best ℓ ."

Runtime: j < d, k < B, l < d; total $O(d^2B)$.

 ℓ 's that witness the minimization). Can construct actual histogram (not just error) as we go (keep the

Prefix array

From x, construct Px: $x_0, x_0 + x_1, x_0 + x_1 + x_2, ...$

Also Px^2 .

Can get $\operatorname{Cost}[\ell,j]$ from ℓ and j in constant time:

- $x_{\ell} + x_{\ell+1} + \dots + x_{j-1} = (Px)_j (Px)_{\ell}$.
- Best height is average $\mu = \frac{1}{j-\ell} ((Px)_{\ell} (Px)_{j}).$
- Error is $\sum_{\ell \le i < j} (x_i \mu)^2 = \sum_i x_i^2 2\mu \sum_i x_i + \mu^2$.

Best Histogram to Robust Representation

Want best B-bucket histogram h to w_{rob} .

wlog, boundaries of h are among boundaries of $w_{\rm rob}$.

the number of boundaries in w_{rob} . Dynamic programming takes time $O(|w_{\text{rob}}|^2 \cdot B)$, where $|w_{\text{rob}}|$ is

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries

Two-Dimensional Histograms

Approximation is constant on rectangles

Hierarchical (recursively split an existing rectangle) or general.

(4B)-bucket hierarchical partition. Theorem: Any B-bucket (general) partition can be refined into a

Proof omitted; not needed for algorithm.

 $(4, 1 + \epsilon)$ -approx general histogram. Aim: $(1, 1 + \epsilon)$ -approximate hierarchical histogram, which is a

2-D Histograms-Overall Strategy

Same overall strategy as 1-D:

- Find best B'-term rep'n over "tensor-product of Haar wavelets."
- Cull back to a robust representation, w_{rob}
- Output best hierarchical histogram to w_{rob} .

Next:

- What is tensor-product of Haar wavelets?
- How to find best B-bucket hierarchical histogram.

Tensor products

Need ONB that simulates and is simulated by 1-bucket histograms.

Generally: $(\alpha \otimes \beta)(x, y) = \alpha(x)\beta(y)$.

Use tensor product of Haar wavelets:

$$\psi_{j,k}(x,y) = \psi_j(x) \cdot \psi_k(y).$$

Tensor product of ONBs is ONB.

Processing Updates

wavelets. Update to x leads to updates to $O(\log^2(d))$ tensor product of Haar

(Algorithm is exponential in the dimension, 2.)

Dynamic Programming

Want best hierarchical h to w_{rob} .

Boundaries of h can be taken from boundaries of w_{rob} .

Best j-cut hierarchical h has:

- a full cut (horiz or vert, say vert)
- a k-cut partition on the left
- a (j-1-k)-cut partition on the right.

Runtime: polynomial in boundaries of $w_{\rm rob}$ and desired number of buckets.

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries

Piecewise-linear representations

Want best B-bucket pw-linear approx to x.

Same overall strategy:

- Find best "linear multiwavelet" representation
- Cull back to a robust representation, w_{rob}
- Output best B-bucket piecewise-linear representation to w_{rob} .

Next:

- What are linear multiwavelets?
- How to find best B-bucket piecewise-linear representation.

Linear Multiwavelets, Graphical

Linear Multiwavelets

F.g.,

Linear Multiwavelets: Properties

- ONB
- Linear Multiwavelets and pw-linear representations simulate each other with $O(\log(d))$ -factor blowup

Best Piecewise-Linear Representation

Have $w_{\rm rob}$ (pw-linear rep'n with $B' \approx B \cdot \log(d)/\epsilon$ pieces)

repn to x is Want best B-bucket pw-linear repn h to w_{rob} . Recall best 1-bucket

$$\langle x, \psi \rangle \psi + \langle x, \phi \rangle \phi,$$

where ψ is constant and ϕ is slant.

Need

- New prefix arrays
- "Dual Dynamic Programming;" cost polynomial in $B \log(d)/\epsilon$.

Prefix arrays:

- Get $\langle x, \psi \rangle$ from Px
- Get $\langle x, \phi \rangle$ from $P(x \cdot \phi)$ and Px
- Error of $a \cdot \psi + b \cdot \phi$ to x is

$$||x - (a \cdot \psi + b \cdot \phi)||^2 = \langle x - (a \cdot \psi + b \cdot \phi), x - (a \cdot \psi + b \cdot \phi) \rangle.$$

Also need $P(x^2)$.

Dual Dynamic Programming

histogram on [0,j) with error at most m (in appropriate units). Define Far[k, m] as the biggest j such that there's a k-bucket

Assume we know E with $\frac{1}{2}E \leq E_{\text{opt}} \leq E$.

coarse granularity leads to $\epsilon E/B$ extra error per boundary— ϵE in Consider $m = 0, \epsilon E/B, 2\epsilon E/B, \ldots, 2E$. $(B/\epsilon \text{ possibilities for } m;$

Thus: $Far[k, m] = max_n\{j : n + Cost[Far[k-1, n], j] < m\}.$

bucket. Try all n." "Go as far as we can with k-1 buckets and error n, then add 1

 $O(B^3 \log(d)/\epsilon^2)$. Runtime: k < B, $m < B/\epsilon$, $n < B/\epsilon$, find j by binary search:

Rangesum histograms

Given x, want pw-constant h to optimize range queries to x:

$$\sum_{\ell,r} \left(\sum_{\ell \le i < r} h - x_i \right)^2.$$

Height h of a bucket affects many non-local queries.

Foils previous tricks. Instead, transform to prefix domain.

Transform to Prefix domain

$$\sum_{\ell,r} \left(\sum_{\ell \le i < r} h_i - x_i \right)^2$$

$$= \sum_{\ell,r} ((P(h-x))_r - (P(h-x))_\ell)^2$$

$$= \sum_{\ell,r} (P(h-x))_r^2 + (P(h-x))_\ell^2 - 2P(h-x)_r P(h-x)_\ell$$

$$= 2d \sum_{\ell} ((Ph)_\ell - (Px)_\ell)^2 \quad \text{(we'll make } \sum_{\ell} P(h-x)_\ell = 0.)$$

$$= 2d \|Ph - Px\|^2,$$

Get point-query problem.

Prefix array of histograms

If h is pw-constant, then Ph is piecewise-linear connected

(equivalent to original problem). Do not know how to find near-best pwlc approx to given Px

under point queries. Find near-best B-bucket pw-linear (disconnected) approx to Px

Leads to (2B)-bucket pw-constant repn for range queries to x.

Simulate/Invert Prefix Array

When reading x, simulate reading Px:

- "add 5 to x_3 " becomes "add 5 to $(Px)_3, (Px)_4, (Px)_5, \dots$ "
- Affects only $O(\log(d))$ linear multiwavelets (whose support includes 3).

From Ph, recover $h_i = (\Delta(Ph))_i = (Ph)_{i+1} - (Ph)_i$.

Overall algorithm

- When reading x, simulate reading Px.
- Find best (2B)-bucket pw-linear approx ℓ to Px under point queries
- Make sure $avg(\ell) = avg(Px)$. (Approximately enforced automatically by optimality.)
- Output $\Delta \ell$ as $(2, 1 + \epsilon)$ approximation, i.e., 2B buckets, $(1 + \epsilon)$ times best error under range queries.

Overview of Summaries

- Heavy Hitters
- Weak greedy sparse recovery
- Orthonormal change of basis
- Haar Wavelets
- Histograms (piecewise constant)
- Multi-dimensional (hierarchical)
- Piecewise-linear
- Range queries